Annotation Categories of the Plasmid Cluster







Summary of the plasmid cluster

Basic Information about the Plasmid Cluster

  Cluster Information   Plasmid Cluster ID   C1861
  Reference Plasmid   1111525849663802_bin.4__k141_15481
  Reference Plasmid Size   21058
  Reference Plasmid GC Content   0.65
  Reference Plasmid Mobility Type   non-mobilizable





Mutation sites in the plasmid cluster


The table lists mutations identified in the plasmid cluster.
Note: Mutations identified in this plasmid cluster are listed below. Click on a mutation ID to view full details..

mutid gname pos count tissue frequnt biotype consequence impact nucchange aachange
M0019056 FEGAHLJJ_00014 9972 3 Skin 0.75 protein_coding missense_variant MODERATE 184A>G Asn62Asp
M0019057 FEGAHLJJ_00014 10025 3 Skin 0.75 protein_coding missense_variant MODERATE 131G>C Gly44Ala
M0019058 FEGAHLJJ_00015 10661 3 Skin 0.75 protein_coding synonymous_variant LOW 363G>A Gly121Gly
M0019059 FEGAHLJJ_00008 10800 3 Skin 0.75 protein_coding upstream_gene_variant MODIFIER -3600C>T None
M0019060 FEGAHLJJ_00016 11064 3 Skin 0.75 protein_coding synonymous_variant LOW 345T>G Gly115Gly






Analysis of virulence factors contributing to bacterial pathogenicity


This table presents virulence factors identified within the plasmid cluster.
      Note: Virulence factor analysis was performed using VFDB. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known virulence factors are listed.

Gene Name vf_gene_id vf_name identity evalue qstart qend query_coverage subject_coverage vf_category gene_description condition







        Analysis of biocide and heavy metal resistance genes to assess antimicrobial risk and environmental impact


This table presents biocides and heavy metals resistance genes identified within the plasmid cluster.
      Note: Analyzing biocide and heavy metal resistance genes based on BacMet to evaluate bacterial resistance risk and the potential impact of environmental heavy metal contamination. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, E-value < 1e-5) to known biocide and heavy metal resistance genes are listed.

Gene Name compound identity evalue qstart qend query_coverage subject_coverage group
FEGAHLJJ_00019 Sodium Dodecyl Sulfate (SDS) [class: Organo-sulfate], Ethidium Bromide [class: Phenanthridine], n-hexane [class: Alkane], Chlorhexidine [class: Biguanides], Benzylkonium Chloride (BAC) [class: Quaternary Ammonium Compounds (QACs)] 73.9 0 1 1042 0.9840 0.9962 experiment
FEGAHLJJ_00019 Benzylkonium Chloride (BAC) [class: Quaternary Ammonium Compounds (QACs)], Clorine Dioxide (ClO2) [class: Halogens], Triclosan [class: Phenolic compounds], Cetrimide (CTM) [class: Quaternary Ammonium Compounds (QACs)], Chlorhexidine [class: Biguanides], Sodium Dodecyl Sulfate (SDS) [class: Organo-sulfate], Acriflavine [class: Acridine] 75.1 0 1 1041 0.9830 0.9924 prediction
FEGAHLJJ_00022 Selenium (Se), Hydrogen Peroxide (H2O2) [class: Peroxides] 71 3.1e-83 1 208 1.0048 1.0294 prediction






        Analyzing antimicrobial resistance genes to assess bacterial resistance to antibiotics and other antimicrobial agents


This table presents antimicrobial resistance genes identified within the plasmid cluster.
      Note: Antimicrobial resistance was performed using CARD. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known antimicrobial resistance genes are listed.

Gene Name aro_accession identity evalue qstart qend query_coverage subject_coverage drug_class amr_gene_family resistance_mechanism
FEGAHLJJ_00019 ARO:3003923 74.2 0 1 1042 0.9840 0.9933 fluoroquinolone antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux






Analysis of pathogenicity genes to explore pathogen-host interactions


This table presents host pathogen-host interactions within the plasmid cluster.
      Note: Analyzing pathogenicity-related genes using PHI-base to understand pathogen virulence mechanisms and their impact on host interactions. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e-5) to known pathogenicity-related genes are listed.

Gene Name phi_molconn_id host gene_name identity evalue qstart qend query_coverage subject_coverage host_descripton disease_name function phenotype_of_mutant
FEGAHLJJ_00019 PHI:123430 saxF (XCC1440) 77.1 0 1 1037 0.9783 0.9811 eudicots black rot efflux pump membrane transporter reduced virulence






        Analyzing carbohydrate-active enzyme genes to uncover mechanisms of nutrient degradation


This table presents carbohydrate-active enzyme genes identified within the plasmid cluster.
      Note: Annotation of carbohydrate-active enzyme genes was performed using CAZy to explore mechanisms of nutrient breakdown and utilization. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known CAZyme genes are listed.

Gene Name cazy_id identity evalue qstart qend query_coverage subject_coverage





        Analyzing transport proteins to understand bacterial strategies for substrate uptake and detoxification


This table presents transport proteins within the plasmid cluster.
      Note: Investigation of transport proteins based on TCDB to uncover bacterial mechanisms of substrate transport and environmental detoxification. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known transport protein entries are listed.

Gene Name tcid identity evalue qstart qend query_coverage subject_coverage class_field class_term subclass subclass_term family family_term
FEGAHLJJ_00019 2.A.6.2.14 80.4 0 1 1051 0.9915 2.2331 2 Electrochemical Potential-driven Transporters 2.A Porters (uniporters, symporters, antiporters) 2.A.6 The Resistance-Nodulation-Cell Division (RND) Superfamily