Annotation Categories of the Plasmid Cluster







Summary of the plasmid cluster

Basic Information about the Plasmid Cluster

  Cluster Information   Plasmid Cluster ID   C301
  Reference Plasmid   NC_011642.1
  Reference Plasmid Size   106527
  Reference Plasmid GC Content   0.40
  Reference Plasmid Mobility Type   conjugative





Mutation sites in the plasmid cluster


The table lists mutations identified in the plasmid cluster.
Note: Mutations identified in this plasmid cluster are listed below. Click on a mutation ID to view full details..

mutid gname pos count tissue frequnt biotype consequence impact nucchange aachange
M0151868 CKJDBIGE_00032 28110 3 Gut 0.38 protein_coding upstream_gene_variant MODIFIER -4517C>T None






Analysis of virulence factors contributing to bacterial pathogenicity


This table presents virulence factors identified within the plasmid cluster.
      Note: Virulence factor analysis was performed using VFDB. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known virulence factors are listed.

Gene Name vf_gene_id vf_name identity evalue qstart qend query_coverage subject_coverage vf_category gene_description condition
CKJDBIGE_00105 VFG002164 AS 95.9 0 1 1308 1.0 1.0023 Adherence aggregation substance PrgB/Asc10 experiment
CKJDBIGE_00105 VFG002164 AS 95.9 0 1 1308 1.0 1.0023 Adherence aggregation substance PrgB/Asc10 prediction







        Analysis of biocide and heavy metal resistance genes to assess antimicrobial risk and environmental impact


This table presents biocides and heavy metals resistance genes identified within the plasmid cluster.
      Note: Analyzing biocide and heavy metal resistance genes based on BacMet to evaluate bacterial resistance risk and the potential impact of environmental heavy metal contamination. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, E-value < 1e-5) to known biocide and heavy metal resistance genes are listed.

Gene Name compound identity evalue qstart qend query_coverage subject_coverage group






        Analyzing antimicrobial resistance genes to assess bacterial resistance to antibiotics and other antimicrobial agents


This table presents antimicrobial resistance genes identified within the plasmid cluster.
      Note: Antimicrobial resistance was performed using CARD. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known antimicrobial resistance genes are listed.

Gene Name aro_accession identity evalue qstart qend query_coverage subject_coverage drug_class amr_gene_family resistance_mechanism
CKJDBIGE_00032 ARO:3002921 96.3 9.03e-153 1 219 1.0000 0.9955 glycopeptide antibiotic glycopeptide resistance gene cluster antibiotic target alteration
CKJDBIGE_00033 ARO:3002932 95.7 1.03e-302 1 447 1.0000 1.0000 glycopeptide antibiotic vanS antibiotic target alteration
CKJDBIGE_00034 ARO:3002956 92.9 1.55e-184 1 268 1.0000 1.0000 glycopeptide antibiotic vanY antibiotic target alteration
CKJDBIGE_00035 ARO:3002964 93.1 2.81e-195 1 275 1.0000 1.0000 glycopeptide antibiotic vanW antibiotic target alteration
CKJDBIGE_00036 ARO:3002943 94.1 7e-220 1 323 1.0000 1.0000 glycopeptide antibiotic vanH antibiotic target alteration
CKJDBIGE_00037 ARO:3000013 100 4.44e-253 1 342 1.0000 1.0000 glycopeptide antibiotic glycopeptide resistance gene cluster antibiotic target alteration
CKJDBIGE_00038 ARO:3002950 95.5 7.6e-150 1 202 1.0000 1.0000 glycopeptide antibiotic vanX antibiotic target alteration






Analysis of pathogenicity genes to explore pathogen-host interactions


This table presents host pathogen-host interactions within the plasmid cluster.
      Note: Analyzing pathogenicity-related genes using PHI-base to understand pathogen virulence mechanisms and their impact on host interactions. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e-5) to known pathogenicity-related genes are listed.

Gene Name phi_molconn_id host gene_name identity evalue qstart qend query_coverage subject_coverage host_descripton disease_name function phenotype_of_mutant






        Analyzing carbohydrate-active enzyme genes to uncover mechanisms of nutrient degradation


This table presents carbohydrate-active enzyme genes identified within the plasmid cluster.
      Note: Annotation of carbohydrate-active enzyme genes was performed using CAZy to explore mechanisms of nutrient breakdown and utilization. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known CAZyme genes are listed.

Gene Name cazy_id identity evalue qstart qend query_coverage subject_coverage
CKJDBIGE_00007 BAH02316.1|GH23 100 2.52e-260 1 360 1 1
CKJDBIGE_00064 BAH02371.1|GH24 100 0 1 595 1 1





        Analyzing transport proteins to understand bacterial strategies for substrate uptake and detoxification


This table presents transport proteins within the plasmid cluster.
      Note: Investigation of transport proteins based on TCDB to uncover bacterial mechanisms of substrate transport and environmental detoxification. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known transport protein entries are listed.

Gene Name tcid identity evalue qstart qend query_coverage subject_coverage class_field class_term subclass subclass_term family family_term
CKJDBIGE_00049 3.A.7.19.1 86.5 2.9e-230 3 447 0.9955 0.7932 3 Primary Active Transporters 3.A P-P-bond-hydrolysis-driven transporters 3.A.7 The Type IV (Conjugal DNA-Protein Transfer or VirB) Secretory Pathway (IVSP) Family
CKJDBIGE_00069 9.B.91.1.1 99.4 6.9e-90 1 180 1.0000 1.0000 9 Incompletely Characterized Transport Systems 9.B Putative transport proteins 9.B.91 The Bacteriocin 41 Immunity Protein (Bac41IP) Family