Annotation Categories of the Plasmid Cluster







Summary of the plasmid cluster

Basic Information about the Plasmid Cluster

  Cluster Information   Plasmid Cluster ID   C747
  Reference Plasmid   NZ_CP054280.1
  Reference Plasmid Size   109094
  Reference Plasmid GC Content   0.53
  Reference Plasmid Mobility Type   conjugative





Mutation sites in the plasmid cluster


The table lists mutations identified in the plasmid cluster.
Note: Mutations identified in this plasmid cluster are listed below. Click on a mutation ID to view full details..

mutid gname pos count tissue frequnt biotype consequence impact nucchange aachange
M0174737 BECKBOEM_00076 69113 4 Gut 1.00 protein_coding stop_gained HIGH 167G>A Trp56*
M0174738 BECKBOEM_00076 69114 4 Gut 1.00 protein_coding missense_variant MODERATE 166T>C Trp56Arg
M0174739 BECKBOEM_00076 69117 4 Gut 1.00 protein_coding missense_variant MODERATE 163G>C Ala55Pro
M0174740 BECKBOEM_00076 69118 4 Gut 1.00 protein_coding synonymous_variant LOW 162C>A Ser54Ser






Analysis of virulence factors contributing to bacterial pathogenicity


This table presents virulence factors identified within the plasmid cluster.
      Note: Virulence factor analysis was performed using VFDB. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known virulence factors are listed.

Gene Name vf_gene_id vf_name identity evalue qstart qend query_coverage subject_coverage vf_category gene_description condition
BECKBOEM_00109 VFG034679 Ibes 72.1 4.7e-184 1 459 0.9957 0.9978 Invasion Cu(+)/Ag(+) efflux RND transporter outer membrane channel CusC experiment
BECKBOEM_00109 VFG034652 Ibes 72.1 2.7e-183 1 459 0.9957 0.9978 Invasion Cu(+)/Ag(+) efflux RND transporter outer membrane channel CusC prediction







        Analysis of biocide and heavy metal resistance genes to assess antimicrobial risk and environmental impact


This table presents biocides and heavy metals resistance genes identified within the plasmid cluster.
      Note: Analyzing biocide and heavy metal resistance genes based on BacMet to evaluate bacterial resistance risk and the potential impact of environmental heavy metal contamination. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, E-value < 1e-5) to known biocide and heavy metal resistance genes are listed.

Gene Name compound identity evalue qstart qend query_coverage subject_coverage group
BECKBOEM_00068 Arsenic (As), Antimony (Sb) 99.3 3.5e-77 1 141 1.0000 1.0000 experiment
BECKBOEM_00071 Arsenic (As), Antimony (Sb) 99.1 0 1 583 1.0000 1.0000 experiment
BECKBOEM_00072 Arsenic (As), Antimony (Sb) 98.3 1.6e-67 1 120 1.0000 1.0000 experiment
BECKBOEM_00073 Arsenic (As), Antimony (Sb), Bismuth (Bi) 100 8.1e-64 1 117 1.0000 1.0000 experiment
BECKBOEM_00077 Mercury (Hg) 96.2 2.7e-39 1 78 1.0000 1.0000 experiment
BECKBOEM_00078 Mercury (Hg) 90.1 1.6e-54 1 121 1.0000 1.0000 experiment
BECKBOEM_00079 Mercury (Hg) 92.5 8.4e-292 1 561 1.0000 1.0000 experiment
BECKBOEM_00080 Mercury (Hg) 80.1 1.6e-61 1 141 1.0000 1.0000 experiment
BECKBOEM_00081 Mercury (Hg) 85.7 4.5e-38 1 91 1.0000 1.0000 experiment
BECKBOEM_00082 Mercury (Hg) 99.1 6e-62 7 121 0.9504 0.9914 experiment
BECKBOEM_00083 Mercury (Hg) 88.7 5.5e-73 1 151 1.0000 1.0000 experiment
BECKBOEM_00092 Copper (Cu), Silver (Ag) 81.9 4.8e-58 1 144 1.0000 1.0000 experiment
BECKBOEM_00093 Copper (Cu) 90.1 2.2e-237 1 465 0.9979 0.9979 experiment
BECKBOEM_00094 Copper (Cu) 94.2 1.1e-120 1 226 1.0000 1.0000 experiment
BECKBOEM_00095 Copper (Cu) 85.4 3.9e-142 1 309 1.0000 1.0000 experiment
BECKBOEM_00096 Copper (Cu) 93.7 2.5e-63 1 126 1.0000 1.0000 experiment
BECKBOEM_00097 Copper (Cu) 84.5 1.3e-150 3 297 0.9966 1.0000 experiment
BECKBOEM_00098 Copper (Cu) 94.6 1.1e-287 1 496 1.0000 0.8198 experiment
BECKBOEM_00104 Silver (Ag) 86.4 0 1 813 0.9963 0.9879 experiment
BECKBOEM_00106 Silver (Ag) 97.1 0 1 1048 1.0000 1.0000 experiment
BECKBOEM_00107 Silver (Ag) 93 9.7e-232 1 430 1.0000 1.0000 experiment
BECKBOEM_00108 Silver (Ag) 83.3 7.4e-41 28 117 0.7692 0.9375 experiment
BECKBOEM_00109 Silver (Ag) 92.4 4e-239 1 461 1.0000 1.0000 experiment
BECKBOEM_00110 Copper (Cu), Silver (Ag) 88.9 8.7e-115 1 225 0.9956 0.9912 experiment
BECKBOEM_00111 Silver (Ag) 84.6 4.7e-230 1 489 1.0020 0.9920 experiment
BECKBOEM_00112 Silver (Ag) 76.2 4e-57 1 143 1.0000 1.0000 experiment
BECKBOEM_00068 Arsenic (As) 100 1.6e-75 1 141 1.0000 1.0000 prediction
BECKBOEM_00071 Arsenic (As), Antimony (Sb) 100 0 1 583 1.0000 1.0000 prediction
BECKBOEM_00072 Arsenic (As) 100 4.4e-66 1 120 1.0000 1.0000 prediction
BECKBOEM_00073 Arsenic (As) 100 1.9e-61 1 117 1.0000 1.0000 prediction
BECKBOEM_00077 Mercury (Hg) 98.7 5.1e-39 1 78 1.0000 1.0000 prediction
BECKBOEM_00078 Mercury (Hg) 100 3.1e-59 1 121 1.0000 1.0000 prediction
BECKBOEM_00079 Mercury (Hg), Phenylmercury Acetate [class: Organo-mercury] 99.8 0 1 561 1.0000 1.0000 prediction
BECKBOEM_00080 Mercury (Hg) 80.9 3.2e-60 1 141 1.0000 1.0000 prediction
BECKBOEM_00081 Mercury (Hg) 94.5 9.1e-40 1 91 1.0000 1.0000 prediction
BECKBOEM_00082 Mercury (Hg) 100 1.2e-63 1 121 1.0000 1.0000 prediction
BECKBOEM_00083 Mercury (Hg) 99.3 7.9e-81 1 151 1.0000 1.0000 prediction
BECKBOEM_00092 Copper (Cu), Silver (Ag) 84.7 2.4e-58 1 144 1.0000 1.0000 prediction
BECKBOEM_00093 Copper (Cu) 98.9 3.2e-258 1 466 1.0000 1.0000 prediction
BECKBOEM_00094 Copper (Cu) 100 3e-124 1 226 1.0000 1.0000 prediction
BECKBOEM_00095 Copper (Cu) 100 4.2e-161 1 309 1.0000 1.0000 prediction
BECKBOEM_00096 Copper (Cu) 100 3.9e-65 1 126 1.0000 1.0000 prediction
BECKBOEM_00097 Copper (Cu) 84.9 7.1e-150 1 297 1.0034 1.0000 prediction
BECKBOEM_00098 Copper (Cu) 100 3.4e-298 1 496 1.0000 0.8198 prediction
BECKBOEM_00104 Silver (Ag) 87.8 0 1 813 0.9951 1.0000 prediction
BECKBOEM_00106 Silver (Ag) 100 0 1 1048 1.0000 1.0000 prediction
BECKBOEM_00107 Silver (Ag) 100 3.8e-245 1 430 1.0000 1.0000 prediction
BECKBOEM_00108 Silver (Ag) 87.2 9.2e-53 1 117 1.0000 1.0000 prediction
BECKBOEM_00109 Silver (Ag) 100 3.7e-254 1 461 1.0000 1.0000 prediction
BECKBOEM_00110 Silver (Ag) 96.9 4.8e-122 1 226 1.0000 1.0000 prediction
BECKBOEM_00111 Silver (Ag) 88.7 1.4e-243 1 486 0.9878 0.9898 prediction
BECKBOEM_00112 Silver (Ag) 79 4.4e-57 1 143 1.0000 1.0000 prediction






        Analyzing antimicrobial resistance genes to assess bacterial resistance to antibiotics and other antimicrobial agents


This table presents antimicrobial resistance genes identified within the plasmid cluster.
      Note: Antimicrobial resistance was performed using CARD. Genes in plasmid clusters showing strong homology (identity > 70%, coverage > 70%, E-value < 1e-5) to known antimicrobial resistance genes are listed.

Gene Name aro_accession identity evalue qstart qend query_coverage subject_coverage drug_class amr_gene_family resistance_mechanism






Analysis of pathogenicity genes to explore pathogen-host interactions


This table presents host pathogen-host interactions within the plasmid cluster.
      Note: Analyzing pathogenicity-related genes using PHI-base to understand pathogen virulence mechanisms and their impact on host interactions. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e-5) to known pathogenicity-related genes are listed.

Gene Name phi_molconn_id host gene_name identity evalue qstart qend query_coverage subject_coverage host_descripton disease_name function phenotype_of_mutant






        Analyzing carbohydrate-active enzyme genes to uncover mechanisms of nutrient degradation


This table presents carbohydrate-active enzyme genes identified within the plasmid cluster.
      Note: Annotation of carbohydrate-active enzyme genes was performed using CAZy to explore mechanisms of nutrient breakdown and utilization. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known CAZyme genes are listed.

Gene Name cazy_id identity evalue qstart qend query_coverage subject_coverage
BECKBOEM_00023 APB48007.1|GH23 100 2.97e-105 1 151 1 1
BECKBOEM_00057 QLV33194.1|GT2 100 3.48e-241 1 331 1 1





        Analyzing transport proteins to understand bacterial strategies for substrate uptake and detoxification


This table presents transport proteins within the plasmid cluster.
      Note: Investigation of transport proteins based on TCDB to uncover bacterial mechanisms of substrate transport and environmental detoxification. Genes in plasmid clusters showing strong homology (identity > 70%, subject coverage > 70%, and E-value < 1e−5) to known transport protein entries are listed.

Gene Name tcid identity evalue qstart qend query_coverage subject_coverage class_field class_term subclass subclass_term family family_term
BECKBOEM_00059 2.A.53.3.1 90.9 3.1e-249 1 492 1.0000 1.0000 2 Electrochemical Potential-driven Transporters 2.A Porters (uniporters, symporters, antiporters) 2.A.53 The Sulfate Permease (SulP) Family
BECKBOEM_00071 3.A.4.1.1 85.7 5e-283 1 581 0.9966 1.3543 3 Primary Active Transporters 3.A P-P-bond-hydrolysis-driven transporters 3.A.4 The Arsenite-Antimonite (ArsAB) Efflux Family
BECKBOEM_00077 1.A.72.5.1 80.8 7.5e-33 1 78 1.0000 1.0000 1 Channels/Pores 1.A α-Type Channels 1.A.72 The Mercuric Ion Pore (Mer) Superfamily
BECKBOEM_00081 1.A.72.3.1 85.7 1.7e-36 1 91 1.0000 1.0000 1 Channels/Pores 1.A α-Type Channels 1.A.72 The Mercuric Ion Pore (Mer) Superfamily
BECKBOEM_00082 1.A.72.3.1 93 4.4e-56 7 121 0.9504 1.2637 1 Channels/Pores 1.A α-Type Channels 1.A.72 The Mercuric Ion Pore (Mer) Superfamily
BECKBOEM_00095 9.B.62.1.1 85.4 1.5e-140 1 309 1.0000 1.0000 9 Incompletely Characterized Transport Systems 9.B Putative transport proteins 9.B.62 The Copper Resistance (CopD) Family
BECKBOEM_00097 1.B.76.1.5 84.5 4.9e-149 3 297 0.9933 1.0000 1 Channels/Pores 1.B β-Barrel Porins 1.B.76 The Copper Resistance Putative Porin (CopB) Family
BECKBOEM_00102 1.A.34.1.3 85.8 8.2e-118 1 246 1.0000 1.0000 1 Channels/Pores 1.A α-Type Channels 1.A.34 The <i>Bacillus</i> Gap Junction-like Channel-forming Complex (GJ-CC) Family
BECKBOEM_00104 3.A.3.5.4 86.4 0 1 813 0.9951 0.9879 3 Primary Active Transporters 3.A P-P-bond-hydrolysis-driven transporters 3.A.3 The P-type ATPase (P-ATPase) Superfamily
BECKBOEM_00106 2.A.6.1.3 97.1 0 1 1048 1.0000 1.0000 2 Electrochemical Potential-driven Transporters 2.A Porters (uniporters, symporters, antiporters) 2.A.6 The Resistance-Nodulation-Cell Division (RND) Superfamily
BECKBOEM_00109 1.B.17.3.4 92.4 1.5e-237 1 461 1.0000 1.0000 1 Channels/Pores 1.B β-Barrel Porins 1.B.17 The Outer Membrane Factor (OMF) Family